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Functional Variant in a Bitter-Taste Receptor (hTAS2R16) Influences Risk
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A coding single-nucleotide polymorphism (cSNP), K172N, in hTAS2R16, a gene encoding a taste receptor for bitter
b-glucopyranosides, shows significant association with alcohol dependence ( ). This gene is located onP p .00018
chromosome 7q in a region reported elsewhere to exhibit linkage with alcohol dependence. The SNP is located in
the putative ligand-binding domain and is associated with an increased sensitivity to many bitter b-glucopyranosides
in the presence of the N172 allele. Individuals with the ancestral allele K172 are at increased risk of alcohol
dependence, regardless of ethnicity. However, this risk allele is uncommon in European Americans (minor-allele
frequency [MAF] 0.6%), whereas 45% of African Americans carry the allele (MAF 26%), which makes it a much
more significant risk factor in the African American population.
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Alcohol dependence (MIM 103780) is one of the most
common and costly health problems in the United States
(Centers for Disease Control and Prevention 2004). It is
a complex disease, with both genetic and environmen-
tal contributions to the risk. Family, adoption, and twin
studies provide convergent evidence of hereditary factors
in alcoholism (Heath et al. 1997). Heritable influences
account for ∼40%–60% of the total variance in risk (Pick-
ens et al. 1991; Kendler et al. 1994). The Collaborative
Study of the Genetics of Alcoholism (COGA) was estab-
lished to identify genes that modify susceptibility to al-
coholism and related phenotypes. Genomewide linkage
analyses using COGA pedigrees have provided consis-
tent evidence of an alcoholism-susceptibility locus on the
long arm of chromosome 7 in both the initial data set
(Reich et al. 1998) and the replication data set (Foroud
et al. 2000). Our recent studies have also shown linkage
of an overlapping region of chromosome 7q with major
depressive disorder (MIM 608516), composite pheno-
types of alcohol dependence and/or depression, and elec-
trophysiological measures derived from event-related os-
cillations (Nurnberger et al. 2001; Jones et al. 2004;
Wang et al. 2004). Evidence of genetic linkage to alcohol
dependence has also been reported in two Native Amer-

ican populations (Long et al. 1998; Ehlers et al. 2004)
and in extended families from the Framingham Heart
Study population (Ma et al. 2003), although none of
these studies showed linkage to chromosome 7q.

Elsewhere, we have reported evidence of association
between individual SNPs and specific haplotypes within
the gene encoding the acetylcholine muscarinic receptor
2 (CHRM2 [MIM 118493]) and alcohol dependence as
well as major depressive syndrome (Wang et al. 2004).
Since this gene lies near the edge of the linkage peak, we
suspected that additional alcoholism-susceptibility loci
exist in this region of chromosome 7. A search of the
public databases revealed a cluster of bitter-taste recep-
tors (TAS2Rs) in this region, which are potential candi-
date genes. The TAS2R genes, with a size range of 876–
1,014 bp, have intronless coding regions, code for G
protein–coupled receptors, and have recently been iden-
tified in mice and in humans (Adler et al. 2000; Matsu-
nami et al. 2000). A number of coding SNPs (cSNPs)
have been identified in human bitter-taste–receptor genes
(Ueda et al. 2001; Kim et al. 2003, 2005; Soranzo et al.
2005). Among these, three cSNPs in the hTAS2R38 gene
(MIM 607751 and MIM 171200) and one cSNP in the
hTAS2R16 gene (MIM 604867) have been shown to al-
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Figure 1 Location of the cluster of nine TAS2R genes on chromosome 7q (not drawn to scale). (A color version of this figure is available
in the online edition of the Journal.)

ter receptor functions or taste sensitivity to bitter com-
pounds, which suggests that genetic variation of these
TAS2Rs may correlate with susceptibility to diet-related
disease (Tepper 1998; Kim et al. 2003; Wooding et al.
2004; Bufe et al. 2005; Soranzo et al. 2005). Further-
more, variation in the hTAS2R38 gene has been associ-
ated with drinking behavior but not alcohol dependence
(Duffy et al. 2004a, 2004b). Whereas the hTAS2R38 and
other members of the cluster are located telomeric to the
CHRM2 gene (fig. 1), the hTAS2R16 gene is located
between the CHRM2 gene and our linkage peak. In
this study, we genotyped the entire COGA linkage sam-
ple with four SNPs within and flanking the hTAS2R16
gene, including two nonsynonymous cSNPs (K172N and
R222H), and examined the association between these
variations and alcohol dependence.

Material and Methods

Study Subjects and Assessment

Linkage sample.—Alcohol-dependent probands, defined by
DSM-IIIR alcohol dependence (American Psychiatric Associa-
tion 1987) and Feighner-criteria for definite alcoholism (Feigh-
ner et al. 1972), were systematically recruited from alcohol-
treatment units, and their biological relatives were invited to
participate in the study. All subjects were assessed using the
Semi-Structured Assessment for the Genetics of Alcoholism
(Bucholz et al. 1994; Hesselbrock et al. 1999), a semi-struc-
tured interview designed as a polydiagnostic instrument that
generates Feighner, DSM-IIIR, DSM-IV (American Psychiatric
Association 1994), and ICD-10 (World Health Organization
1993) diagnoses of alcohol dependence. These diagnoses are
essentially nested, with DSM-IIIR and Feighner definite alco-
holism defining the broadest diagnosis, and ICD-10, the narrow-
est definition of dependence (Culverhouse et al. 2005). In-

formed consent was obtained from all subjects. A total of 262
families—including 2,310 individuals, with an average of 4.6
alcohol-dependent individuals per pedigree—were selected for
genetic-linkage studies. Among these pedigrees, 298 individ-
uals from 35 pedigrees are African American, and 8 pedigrees
are of mixed ancestry (by self-report).

Additional trios.—The COGA sample contains additional
pedigrees with cell lines that were not informative for linkage
and had therefore not been selected for the linkage sample.
From these, we identified 85 trios consisting of a DSM-IV–
defined alcohol-dependent individual and two parents. This
sample of “additional trios,” including five African American
trios, was typed for SNP rs846664.

Identity-by-Descent (IBD) Sharing

Nonparametric multipoint linkage analysis of independent
( ) affected sibling pairs was conducted using ASPEX,n � 1
which allows large sibships to be included in analyses. Linkage
analyses were performed using the SIBPHASE option, which
infers allele sharing if there is ambiguity between identity by
state and IBD, by use of marker frequencies in the sample. To
avoid biases due to ethnic stratification, maximum-likelihood
allele-frequency estimates were obtained, from the USERM13
subroutine of MENDEL (Boehnke 1991), separately for Afri-
can American and European American pedigrees. Maximum-
likelihood estimates of sharing are displayed in figure 2.

Association Analysis

Transmit (Clayton 1999), an extension of the transmission/
disequilibrium test (Spielman and Ewens 1996) used to test for
association in extended pedigrees to allow for missing parental
genotypes, was used to test each SNP individually for evidence
of linkage and association. The three closely correlated alco-
hol-dependence phenotypes—DSM-IIIR and Feighner definite
alcoholism, DSM-IV alcohol dependence, and ICD-10 alco-
hol dependence—were tested to examine the consistency of re-
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Figure 2 Affected-sibling-pair sharing on chromosome 7. (A color version of this figure is available in the online edition of the Journal.)
Sharing computed, by ASPEX sib_phase, using all parents, with large pedigrees down-weighted to . The solid line represents all pedigrees;n � 1
the dotted line represents pedigrees in which no individual has a copy of the rare polymorphism; the dashed line represents pedigrees in which
at least one individual has a copy of the rare polymorphism.

sults. For the additional trios, association was first tested, using
Transmit, in this sample alone and was then computed again
when combined with the linkage sample.

SNP Assays

The dbSNP database was used to identify SNPs within and
flanking the hTAS2R16 gene. Both pyrosequencing (Biotage
Pyrosequencing) and mass spectrometry (Sequenom) methods
were used for SNP genotyping. For pyrosequencing, PCR prim-
ers were selected using the MacVector 6.5.3 program (Accel-
rys) to yield 200–500-bp genomic fragments containing the
SNP. Standard procedures were followed to generate PCR prod-
ucts. Sequencing primers were designed using the Pyrosequenc-
ing Primer Design program. For mass spectrometry, PCR prim-
ers, termination mixes, and multiplexing capabilities were de-
termined with Sequenom Spectro Designer software v2.00.17.
Standard PCR procedures were used to amplify PCR products.
All unincorporated nucleotides were deactivated with shrimp
alkaline phosphatase. A primer-extension reaction was then
performed with the mass-extension primer and the appropriate
termination mix. The primer-extension products were then
cleaned with resin and were spotted onto a silicon SpectroChip.
The chip was scanned by mass spectrometry (Bruker), and the
resulting genotype spectra were analyzed with the Sequenom
SpectroTYPER software.

Sequence Analysis to Identify Additional Variants

The entire coding region of hTAS2R16 was sequenced in
both directions in DNA from 14 people, including one Eu-
ropean American and six African Americans homozygous for
the minor allele of rs846664 and seven African Americans
heterozygous for the same SNP. Publicly available sequence
databases were used to select PCR primers, to amplify the
coding exon plus at least 60 bp of flanking intronic sequence.
The PCR product was purified using a QIAquick PCR puri-
fication kit (Qiagen) to remove excess primers. Purified PCR
product was sequenced using the BigDye Terminator Cycle Se-
quencing method and then was electrophoresed on an ABI3100
automated DNA sequencer (Applied Biosystems [ABI]). Elec-
tropherograms were analyzed using ABI DNA Sequencing An-
alysis Software, version 3.4.

Heterologous Expression

Generation of the hTAS2R16 haplotypes and functional an-
alysis in HEK293 cells were performed as described elsewhere
(Bufe et al. 2002; Soranzo et al. 2005).

Results

The entire COGA linkage sample was genotyped with
four SNPs, including two nonsynonymous cSNPs, K172N
(rs846664) and R222H (rs860170). Since the three
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Table 1

Association of Alcohol-Dependence Diagnoses with SNPs in hTAS2R16 in the COGA Linkage Sample

A. MAFs of Each SNP in Different Sample Sets

SAMPLE (NO. OF FAMILIES)

MAFa FOR SNP

rs978739
(noncoding)

rs846664
(K172N)

rs860170
(R222H)

rs1204014
(T282T)

All families (262) .35 .04 .30 .08
African American families (35) .34 .26 .10 .27
European American families (219) .35 .006 .32 .05

B. Association of Alcohol-Dependence Diagnoses with SNPs in hTAS2R16 in the COGA Linkage Sample

SAMPLE AND ALCOHOL-DEPENDENCE DIAGNOSISb

P VALUEc FOR SNP

rs978739
(noncoding)

rs846664
(K172N)

rs860170
(R222H)

rs1204014
(T282T)

All families:
COGA ( )N p 1,065 .277 .008 .512 .256
DSM-IV ( )N p 909 .114 .0008 .307 .051
ICD10 ( )N p 683 .369 .006 .336 .186

African American:
COGA ( )N p 128 .695 .024 .547 .028
DSM-IV ( )N p 112 .859 .004 .913 .003
ICD10 ( )N p 87 .945 .066 .843 .116

European American:
COGA ( )N p 907 .193 .593 .378 .608
DSM-IV ( )N p 768 .061 .626 .252 .826
ICD10 ( )N p 574 .297 .890 .260 .840

a Allele frequencies were calculated from founders only.
b N p total number of individuals with diagnosis.
c P values were computed using Transmit. Significant P values are in bold italics.

Table 2

Association of DSM-IV Alcohol Dependence with SNP rs846664

Sample

No. of Nuclear
Pedigrees/Affected

Offspring
No. of Pedigrees with
Heterozygous Parents

No. of Observed/
Expected Transmissions P Valuea

COGA linkage sample 383/758 23 76/61 .0008
Additional trios 85/85 3 3/1.5 .083
Combined sample: 468/843 26 79/62 .00018

African American subset 53/96 17 59/47.5 .0011
European American subset 398/720 5 6/6.8 .649

a P values were computed using Transmit.

cSNPs showed dramatic differences in allele frequency
between African Americans and European Americans,
we stratified samples by race for all analyses (table 1A).
Three SNPs were in Hardy-Weinberg equilibrium (HWE)
in the founders of the stratified subsets. SNP rs846664
has a very low minor-allele frequency (MAF) in Euro-
pean Americans and is not in HWE in this sample, but
it is in HWE in the African American samples, in which
the MAF is much higher. We used Transmit to determine
the pairwise disequilibrium between the SNPs and ob-
served high levels of linkage disequilibrium (LD) ( ′D �

). Transmit was also used to test each SNP individ-0.89
ually for evidence of association between the SNPs and

the alcohol-dependence phenotypes. The nonsynonymous
cSNP rs846664 showed significant association with all
three correlated alcohol-dependence diagnoses in the
COGA linkage sample (table 1B). This association ap-
pears to be driven by the African American subset
( for DSM-IV dependence); however, the non–P p .004
African Americans clearly contribute to the significance
of the P value when the polymorphism is present, be-
cause the overall significance is substantially greater in
the combined sample ( for DSM-IV depen-P p .0008
dence), indicating that the rs846664 polymorphism is
also overtransmitted, when it occurs, in non–African
American populations (table 1B). In the linkage sample,
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Figure 3 Predicted topology of hTAS2R16. E p extracellular domain; TM p transmembrane domain; I p intracellular domain.

a trend of association was also observed between the
synonymous cSNP rs1204014 and DSM-IV alcohol de-
pendence. The significance of this association increased
( ) when the test for association was restrictedP p .003
to the subset of African American families. Neither the
noncoding SNP rs978739 nor the nonsynonymous cSNP
rs860170 showed any association with alcohol depen-
dence in our sample. Haplotype analyses using the two
nonsynonymous cSNPs (rs846664 and rs860170) and
the two significantly associated SNPs (rs846664 and
rs1204014) were less significant than the single SNP as-
sociation results for rs846664 (data not shown).

To further explore the role of SNP rs846664, we strat-
ified the linkage sample into those families containing
the minor allele K172 and those without and performed
affected-sibling-pair linkage analysis with ASPEX. The
families, including 62 nuclear pedigrees, with the minor
allele exhibited IBD sharing of 61.0% at the linkage peak
(D7S1799) on chromosome 7 for DSM-IIIR and Feigh-
ner definite alcoholism, whereas families, including 344
nuclear pedigrees, without the K172 allele exhibited IBD
sharing of 55.7% (overall sharing is 56.5%) (fig. 2).
Thus, it appears that, although only 15% of the nuclear
families have one or more individuals carrying the minor
allele, those families contribute disproportionately to the
linkage signal on chromosome 7. The procedure of com-
paring IBD sharing in pedigrees with and without a pu-

tative risk allele is conservative and may, in fact, under-
estimate the effect of the allele (Li et al. 2004).

To extend our results with rs846664, we genotyped
this SNP in an independent sample: 85 trios (consisting
of a DSM-IV alcohol-dependent individual and two par-
ents) (table 2). With use of Transmit, the independent
trios showed an overtransmission of the K172 allele,
with a trend of association with DSM-IV alcohol depen-
dence. When the data from the 85 trios were combined
with that of the linkage sample, we observed a P value
of .00018 for DSM-IV dependence and substantial over-
transmission of the K172 allele (79 observed/62 expected
transmission). Strong association was also detected with
the correlated alcohol-dependence diagnoses—DSM-
IIIR and Feighner definite alcoholism ( ) andP p .002
ICD-10 dependence ( ). Sequencing of the cod-P p .002
ing region of the hTAS2R16 gene in individuals ho-
mozygous and heterozygous for the minor allele (K172)
confirmed that there were two nonsynonymous coding
changes in the gene—the lysinerasparagine mutation at
codon 172 (rs846664) and the argininerhistidine muta-
tion at codon 222 (rs860170)—and a synonymous cSNP
at codon 282 (rs1204014) (fig. 3). No additional SNPs
were observed. Given the LD pattern in both European
Americans and Africans derived from the International
HapMap Project and the fact that the neighboring genes
(CADPS2 and SLC13A1) are each 1100 kb from the
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Figure 4 Pairwise LD between markers flanking three SNPs in TAS2R16 (500 kb) from Yoruba in population from Ibadan, Nigeria. (A
color version of this figure is available in the online edition of the Journal.)

Table 3

Average EC50 Values of hTAS2R16 Variants for Four Bitter-Taste Agonists

AGONIST

EC50 VALUES (mM) FOR HAPLOTYPE P VALUE FOR t TEST

N172 � R222 N172 � H222 K172 � H222 NR/KH NH/KH NR/NH

8-Hydroxyquinoline-b-D-glucoside .6�.3 .7�.4 1.6�.8 .002 .012 .302
Helicin 1.7�.9 1.8�.8 2.9�.9 .017 .025 .796
Phenyl-b-D-glucoside 1.0�.3 .9�.2 1.5�.6 .024 .003 .249
N-Hexyl-b-D-glucoside 1.6�.9 1.6�.8 2.0�1.0 .227 .294 .884

NOTE.—Significant P values are in bold italics.

hTAS2R16 gene (figs. 4 and 5), it is very likely that the
alcoholism-susceptibility locus detected in the present
study is within hTAS2R16.

The K172N substitution rs846664 is located in the
extracellular loop 2 between transmembrane domains 4
and 5 (fig. 3). In G protein–coupled receptors, including
the TAS2Rs, this domain has been associated with ligand
binding (Adler et al. 2000; Pronin et al. 2004). Moreover,
experimental evidence has demonstrated that the extra-
cellular loop 2 is involved in the activation of the bitter-
taste receptor hTAS2R43 by its agonist 6–nitrosaccha-

rin (Pronin et al. 2004), which suggests that the K172N
substitution in the extracellular loop 2 may alter recep-
tor signaling/taste perception. To directly test whether
K172N and/or R222H influence hTAS2R16 function,
we expressed cDNAs coding for the three hTAS2R16
haplotypes N172 � R222, N172 � H222, and K172 �
H222 in HEK293T cells, and we performed functional
assays with four bitter-taste agonists as described else-
where (Bufe et al. 2002; Soranzo et al. 2005). We did
not analyze the fourth predicted haplotype (K172 �
R222) because it was not observed in the entire COGA
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Table 4

Allele Frequency Distribution (%) of cSNP rs846664
in Different Ethnic Populations

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 5 Pairwise LD between markers flanking two SNPs in TAS2R16 (500 kb) from CEPH (Utah residents with ancestry from northern
and western Europe) population. (A color version of this figure is available in the online edition of the Journal.)

data set. The concentrations of half-maximal responses
(EC50) for the N172 � R222 and N172 � H222 con-
structs were not significantly different for any of the four
structurally divergent b-glucopyranosides. In contrast,
the K172 � H222 construct exhibited a higher EC50 for
three of the four compounds tested (table 3). These re-
sults show that the K172N polymorphism results in a
functional change to the receptor, whereas no functional
effect of the R222H polymorphism was observed.

Discussion

Elsewhere, we examined a candidate gene, CHRM2, near
the linkage peak for alcohol dependence on chromosome
7 and reported evidence of association between genetic
variation in this gene and alcohol dependence and re-
lated phenotypes (Jones et al. 2004; Wang et al. 2004).
However, this gene is at the edge of our linkage peak,
and several analyses suggest that this association cannot
account totally for the observed linkage. Since there are
probably many genetic factors influencing the develop-
ment of alcoholism, we pursued other candidate genes

in this region, specifically the hTAS2r16 bitter-taste–re-
ceptor gene.

Our SNP analysis with Transmit detected a significant
association between the nonsynonymous cSNP K172N
(rs846664) in hTAS2R16 and all three nested alcohol-
dependence diagnoses in the COGA linkage sample. To
extend this result, we genotyped this variant in an inde-
pendent sample of 85 trios. The association in the trios
showed a trend only in the same direction as the original
sample, most likely because of the small sample size.
When the trios were combined with the linkage sample,
the evidence of association increased. After a Bonferroni
correction for 12 tests in the overall linkage sample (four
SNPs and three alcoholism diagnoses), the DSM-IV diag-
nosis remained significant. Although the four SNPs are
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essentially uncorrelated because of differences in allele
frequencies, the overall correction is overly conservative,
since the alcoholism diagnoses are highly correlated. The
analyses of allele-frequency differences in subpopula-
tions were exploratory and would not be significant after
a Bonferroni correction.

The LD structure in this region in both European Am-
ericans and Africans indicates that the TAS2R16 gene
is the only gene in the LD block containing the SNP
rs846664. Furthermore, the neighboring genes are 1100
kb away from hTAS2R16. These observations strongly
support the hypothesis that the alcoholism-susceptibility
locus detected in this study is within the hTAS2R16 gene.
Since no novel cSNPs were identified from our sequenc-
ing analysis and no association was observed between
cSNP R222H and alcohol dependence, both our genetic
analysis and the heterologous expression studies suggests
that the K172 allele is the functional variant.

The K172 allele is uncommon in the European Amer-
icans in our sample (with an MAF of 0.6%), but 45%
of African Americans in our sample carry this allele
(MAF 26%). To assess the distribution of the K172 allele
across multiple populations, we typed this SNP in the
Human Genome Diversity Project–CEPH Human Ge-
nome Diversity Cell Line Panel, which includes 1,057
individuals and represents 52 different populations (Cann
et al. 2002). The MAF for rs846664 had a range of
10%–44% in African populations, but it was not de-
tected or was present at very low frequency in non-
African populations (table 4). These frequency data and
our own findings that the K172 allele is associated with
alcoholism in African American pedigrees (tables 1 and
2) suggest that this SNP is likely to be a much more
significant risk factor for alcoholism among populations
of African origin.

Comparative sequence analysis of several primate spe-
cies indicates that the ancestral allele at residue 172 of
the hTAS2R16 gene is, in fact, the K172 allele, which
is the minor allele in all human populations examined
to date (table 4) (Soranzo et al. 2005). The presence of
the minor human allele (K172) in all primate species
that have been sequenced suggests that the N172 allele
must have undergone massive positive selection during
human evolution. The N172 allele is associated with an
increased sensitivity to bitter b-glucopyranosides such as
salicin, arbutin, and cyanogenic glycosides (Soranzo et
al. 2005). Our functional studies confirm the association
between the N172 allele and increased sensitivity to bit-
ter b-glucopyranosides (table 3). The increased sensi-
tivity to bitter compounds in the diet may have driven
the positive selection of this allele (Soranzo et al. 2005).
These results suggest that the bitter taste of some alco-
holic drinks may influence drinking habits and that lack
of this bitter-taste variant is a susceptibility factor for
alcoholism. However, direct measurements of the percep-

tion of bitter taste in subjects homozygous for the K172
or N172 alleles with different bitter-taste agonists and
a detailed analysis of their drinking habits are needed
to further examine the influence of these alleles on taste
perception.

In summary, our genetic and functional data dem-
onstrate that the K172 allele of the polymorphism
rs846664 within the putative ligand-binding domain of
the hTAS2R16 receptor reduces sensitivity of the recep-
tor to bitter-taste stimuli and may thereby influence sus-
ceptibility to alcohol dependence.
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